مجموعة أبحاث تثبت أن فيزياء الكم سببية


1-
G. Chiribella and D. Ebler, Quantum speedup in the identification of cause-effect relations, Nature Comm. 10, 1472 (2019).

https://www.nature.com/articles/s41467-019-09383-8

2-
Leifer, M. S. Quantum dynamics as an analog of conditional probability. Phys. Rev. A 74, 042310 (2006).

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.74.042310

3-
Chiribella, G., D’Ariano, G. M. & Perinotti, P. Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009)

https://link.aps.org/doi/10.1103/PhysRevA.80.022339

4-
Coecke, B. & Spekkens, R. W. Picturing classical and quantum Bayesian inference. Synthese 186, 651–696 (2012).

https://link.springer.com/article/10.1007/s11229-011-9917-5

5-
Leifer, M. S. & Spekkens, R. W. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013).

https://link.aps.org/doi/10.1103/PhysRevA.88.052130

6-
Henson, J., Lal, R. & Pusey, M. F. Theory-independent limits on correlations from generalized Bayesian networks. New J. Phys. 16, 113043 (2014).

https://iopscience.iop.org/article/10.1088/1367-2630/16/11/113043

7-
Pienaar, J. & Brukner, Č. A graph-separation theorem for quantum causal models. New J. Phys. 17, 073020 (2015).

https://iopscience.iop.org/article/10.1088/1367-2630/16/11/113043

8-
Costa, F. & Shrapnel, S. Quantum causal modelling. New J. Phys. 18, 063032 (2016).

https://iopscience.iop.org/article/10.1088/1367-2630/18/6/063032

9-
Portmann, C., Matt, C., Maurer, U., Renner, R. & Tackmann, B. Causal boxes: quantum information-processing systems closed under composition. IEEE Trans. Inf. Theory 63, 3277–3305 (2017).

https://ieeexplore.ieee.org/abstract/document/7867830

10-
Allen, J.-M. A., Barrett, J., Horsman, D. C., Lee, C. M. & Spekkens, R. W. Quantum common causes and quantum causal models. Phys. Rev. X 7, 031021 (2017).

https://link.aps.org/doi/10.1103/PhysRevX.7.031021

11-
MacLean, J.-P. W., Ried, K., Spekkens, R. W. & Resch, K. J. Quantum-coherent mixtures of causal relations. Nat. Commun. 8, 15149 (2017).

https://www.nature.com/articles/ncomms15149

12-
Wood, C. J. & Spekkens, R. W. The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New J. Phys. 17, 033002 (2015).

https://iopscience.iop.org/article/10.1088/1367-2630/17/3/033002

13-
Fitzsimons, J. F., Jones, J. A. & Vedral, V. Quantum correlations which imply causation. Sci. Rep. 5, 18281 (2015).

https://www.nature.com/articles/srep18281

14-
Ried, K. et al. A quantum advantage for inferring causal structure. Nat. Phys. 11, 414–420 (2015).

https://www.nature.com/articles/nphys3266

15-
Chaves, R., Majenz, C. & Gross, D. Information–theoretic implications of quantum causal structures. Nat. Commun. 6, 5766 (2015).

https://www.nature.com/articles/ncomms6766

16-
Giarmatzi, C. & Costa, F. A quantum causal discovery algorithm. npj Quantum Inf. 4, 17 (2018).

https://www.nature.com/articles/s41534-018-0062-6

17-
Chiribella, G., D'Ariano, G. M., & Perinotti, P. (2012, March). Informational axioms for quantum theory. In FOUNDATIONS OF PROBABILITY AND PHYSICS-6 (Vol.

https://aip.scitation.org/doi/10.1063/1.3688980

18-
Chiribella, G., D’Ariano, G. M., & Perinotti, P. (2011). Informational derivation of quantum theory. Physical Review A, 84(1), 012311

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.012311

تعليقات